CLI reference

Dinf provides two command line programs, dinf and dinf-plot. The former provides subcommands for running analyses, while the latter provides subcommands for making plots of various things. When invoked with the -h/--help option, subcomands offer a concise description and list the available options. This help output is reproduced below.

Once Dinf is installed, the commands can be run by typing dinf, dinf-plot, or dinf-tabulate. In addition, the commands can be run using Python module hooks by typing python -m dinf, python -m dinf.plot, or python -m dinf.tabulate. The module hooks can be useful for running the commands from a cloned git repository without requiring installation (e.g. during development).

Analysis/inference

usage: dinf [-h] [-V] {check,train,predict,mc,mcmc,pg-gan} ...

Discriminator-based inference of population parameters.

positional arguments:
  {check,train,predict,mc,mcmc,pg-gan}
    check               Basic dinf_model health checks.
    train               Train a discriminator.
    predict             Make predictions using a trained discriminator.
    mc                  Adversarial Monte Carlo.
    mcmc                Adversarial MCMC.
    pg-gan              PG-GAN style simulated annealing.

optional arguments:
  -h, --help            show this help message and exit
  -V, --version         show program's version number and exit

dinf check

usage: dinf check [-h] [-v | -q] -m model.py

Basic dinf_model health checks.

Checks that the target and generator functions work and return the
same feature shapes and dtypes.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

dinf train

usage: dinf train [-h] [-v | -q] [-S SEED] [-j PARALLELISM]
                  [-r TRAINING_REPLICATES] [-R TEST_REPLICATES] [-e EPOCHS] -m
                  model.py -d discriminator.nn

Train a discriminator.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)

common arguments:
  -S SEED, --seed SEED  Seed for the random number generator. CPU-based
                        training is expected to produce deterministic results.
                        Results may differ between CPU and GPU trained
                        networks for the same seed value. Also note that
                        operations on a GPU are not fully determinstic, so
                        training or applying a neural network twice with the
                        same seed value will not produce identical results.
                        (default: None)
  -j PARALLELISM, --parallelism PARALLELISM
                        Number of processes to use for parallelising calls to
                        the DinfModel's generator_func and target_func. If not
                        specified, all CPU cores will be used. The number of
                        cores used for CPU-based neural networks is not set
                        with this parameter---instead use the`taskset`
                        command. See https://github.com/google/jax/issues/1539
                        (default: None)

training arguments:
  -r TRAINING_REPLICATES, --training-replicates TRAINING_REPLICATES
                        Size of the dataset used to train the discriminator.
                        (default: 1000)
  -R TEST_REPLICATES, --test-replicates TEST_REPLICATES
                        Size of the test dataset used to evaluate the
                        discriminator after each training epoch. (default:
                        1000)
  -e EPOCHS, --epochs EPOCHS
                        Number of full passes over the training dataset when
                        training the discriminator. (default: 1)

  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)
  -d discriminator.nn, --discriminator discriminator.nn
                        Output file where the discriminator will be saved.
                        (default: None)

dinf predict

usage: dinf predict [-h] [-v | -q] [-S SEED] [-j PARALLELISM] [-r REPLICATES]
                    [--target] -m model.py -d discriminator.nn [-o output.npz]

Make predictions using a trained discriminator.

By default, features will be obtained by sampling replicates from
the generator (using parameters from the prior distribution).
To instead sample features from the target dataset, use the
--target option.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  --target              Sample features from the target dataset. (default:
                        False)

common arguments:
  -S SEED, --seed SEED  Seed for the random number generator. CPU-based
                        training is expected to produce deterministic results.
                        Results may differ between CPU and GPU trained
                        networks for the same seed value. Also note that
                        operations on a GPU are not fully determinstic, so
                        training or applying a neural network twice with the
                        same seed value will not produce identical results.
                        (default: None)
  -j PARALLELISM, --parallelism PARALLELISM
                        Number of processes to use for parallelising calls to
                        the DinfModel's generator_func and target_func. If not
                        specified, all CPU cores will be used. The number of
                        cores used for CPU-based neural networks is not set
                        with this parameter---instead use the`taskset`
                        command. See https://github.com/google/jax/issues/1539
                        (default: None)

predict arguments:
  -r REPLICATES, --replicates REPLICATES
                        Number of theta replicates to generate and predict
                        with the discriminator. (default: 1000)

  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)
  -d discriminator.nn, --discriminator discriminator.nn
                        File containing discriminator network weights.
                        (default: None)
  -o output.npz, --output-file output.npz
                        Output data, matching thetas to discriminator
                        predictions. (default: None)

dinf mc

usage: dinf mc [-h] [-v | -q] [-S SEED] [-j PARALLELISM]
               [-r TRAINING_REPLICATES] [-R TEST_REPLICATES] [-e EPOCHS]
               [--top N] [-P PROPOSAL_REPLICATES] [-i ITERATIONS]
               [-o OUTPUT_FOLDER] -m model.py

Adversarial Monte Carlo.

In the first iteration, p[0] is the prior distribution.
The following steps are taken for iteration j:

  - sample training and proposal datasets from distribution p[j],
  - train the discriminator,
  - make predictions with the discriminator on the proposal dataset,
  - construct distribution p[j+1] as a weighted KDE of the proposals,
    where the weights are given by the discriminator predictions.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)

common arguments:
  -S SEED, --seed SEED  Seed for the random number generator. CPU-based
                        training is expected to produce deterministic results.
                        Results may differ between CPU and GPU trained
                        networks for the same seed value. Also note that
                        operations on a GPU are not fully determinstic, so
                        training or applying a neural network twice with the
                        same seed value will not produce identical results.
                        (default: None)
  -j PARALLELISM, --parallelism PARALLELISM
                        Number of processes to use for parallelising calls to
                        the DinfModel's generator_func and target_func. If not
                        specified, all CPU cores will be used. The number of
                        cores used for CPU-based neural networks is not set
                        with this parameter---instead use the`taskset`
                        command. See https://github.com/google/jax/issues/1539
                        (default: None)

training arguments:
  -r TRAINING_REPLICATES, --training-replicates TRAINING_REPLICATES
                        Size of the dataset used to train the discriminator.
                        (default: 1000)
  -R TEST_REPLICATES, --test-replicates TEST_REPLICATES
                        Size of the test dataset used to evaluate the
                        discriminator after each training epoch. (default:
                        1000)
  -e EPOCHS, --epochs EPOCHS
                        Number of full passes over the training dataset when
                        training the discriminator. (default: 1)

SMC arguments:
  --top N               In each iteration, accept only the N top proposals,
                        ranked by discriminator prediction. (default: None)
  -P PROPOSAL_REPLICATES, --proposal-replicates PROPOSAL_REPLICATES
                        Number of replicates for Monte Carlo proposals.
                        (default: 1000)

GAN arguments:
  -i ITERATIONS, --iterations ITERATIONS
                        Number of iterations. (default: 1)
  -o OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
                        Folder to output results. If not specified, the
                        current directory will be used. (default: None)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

dinf mcmc

usage: dinf mcmc [-h] [-v | -q] [-S SEED] [-j PARALLELISM]
                 [-r TRAINING_REPLICATES] [-R TEST_REPLICATES] [-e EPOCHS]
                 [-w WALKERS] [-s STEPS] [--Dx-replicates DX_REPLICATES]
                 [-i ITERATIONS] [-o OUTPUT_FOLDER] -m model.py

Adversarial MCMC.

In the first iteration, p[0] is the prior distribution.
The following steps are taken for iteration j:

  - sample training dataset from the distribution p[j],
  - train the discriminator,
  - run the MCMC,
  - obtain distribution p[j+1] as a KDE of the MCMC sample.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)

common arguments:
  -S SEED, --seed SEED  Seed for the random number generator. CPU-based
                        training is expected to produce deterministic results.
                        Results may differ between CPU and GPU trained
                        networks for the same seed value. Also note that
                        operations on a GPU are not fully determinstic, so
                        training or applying a neural network twice with the
                        same seed value will not produce identical results.
                        (default: None)
  -j PARALLELISM, --parallelism PARALLELISM
                        Number of processes to use for parallelising calls to
                        the DinfModel's generator_func and target_func. If not
                        specified, all CPU cores will be used. The number of
                        cores used for CPU-based neural networks is not set
                        with this parameter---instead use the`taskset`
                        command. See https://github.com/google/jax/issues/1539
                        (default: None)

training arguments:
  -r TRAINING_REPLICATES, --training-replicates TRAINING_REPLICATES
                        Size of the dataset used to train the discriminator.
                        (default: 1000)
  -R TEST_REPLICATES, --test-replicates TEST_REPLICATES
                        Size of the test dataset used to evaluate the
                        discriminator after each training epoch. (default:
                        1000)
  -e EPOCHS, --epochs EPOCHS
                        Number of full passes over the training dataset when
                        training the discriminator. (default: 1)

MCMC arguments:
  -w WALKERS, --walkers WALKERS
                        Number of independent MCMC chains. (default: 64)
  -s STEPS, --steps STEPS
                        The chain length for each MCMC walker. (default: 1000)
  --Dx-replicates DX_REPLICATES
                        Number of generator replicates for approximating
                        E[D(G(θ))]. (default: 32)

GAN arguments:
  -i ITERATIONS, --iterations ITERATIONS
                        Number of iterations. (default: 1)
  -o OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
                        Folder to output results. If not specified, the
                        current directory will be used. (default: None)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

dinf pg-gan

usage: dinf pg-gan [-h] [-v | -q] [-S SEED] [-j PARALLELISM]
                   [-r TRAINING_REPLICATES] [-R TEST_REPLICATES] [-e EPOCHS]
                   [--Dx-replicates DX_REPLICATES]
                   [--num-proposals NUM_PROPOSALS]
                   [--max-pretraining-iterations MAX_PRETRAINING_ITERATIONS]
                   [-i ITERATIONS] [-o OUTPUT_FOLDER] -m model.py

PG-GAN style simulated annealing.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)

common arguments:
  -S SEED, --seed SEED  Seed for the random number generator. CPU-based
                        training is expected to produce deterministic results.
                        Results may differ between CPU and GPU trained
                        networks for the same seed value. Also note that
                        operations on a GPU are not fully determinstic, so
                        training or applying a neural network twice with the
                        same seed value will not produce identical results.
                        (default: None)
  -j PARALLELISM, --parallelism PARALLELISM
                        Number of processes to use for parallelising calls to
                        the DinfModel's generator_func and target_func. If not
                        specified, all CPU cores will be used. The number of
                        cores used for CPU-based neural networks is not set
                        with this parameter---instead use the`taskset`
                        command. See https://github.com/google/jax/issues/1539
                        (default: None)

training arguments:
  -r TRAINING_REPLICATES, --training-replicates TRAINING_REPLICATES
                        Size of the dataset used to train the discriminator.
                        (default: 1000)
  -R TEST_REPLICATES, --test-replicates TEST_REPLICATES
                        Size of the test dataset used to evaluate the
                        discriminator after each training epoch. (default:
                        1000)
  -e EPOCHS, --epochs EPOCHS
                        Number of full passes over the training dataset when
                        training the discriminator. (default: 1)

PG-GAN arguments:
  --Dx-replicates DX_REPLICATES
                        Number of generator replicates for approximating
                        E[D(G(θ))]. (default: 32)
  --num-proposals NUM_PROPOSALS
                        Number of proposals for each parameter in a given
                        iteration. (default: 10)
  --max-pretraining-iterations MAX_PRETRAINING_ITERATIONS
                        Maximum number of pretraining rounds. (default: 100)

GAN arguments:
  -i ITERATIONS, --iterations ITERATIONS
                        Number of iterations. (default: 1)
  -o OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
                        Folder to output results. If not specified, the
                        current directory will be used. (default: None)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

Plotting results

usage: dinf.plot [-h] [-V] {demes,features,metrics,hist,hist2d,gan} ...

Dinf plotting tools.

positional arguments:
  {demes,features,metrics,hist,hist2d,gan}
    demes               Plot a demes-as-tubes demographic model using
                        DemesDraw.
    features            Plot feature matrices as heatmaps.
    metrics             Plot loss and accuracy of discriminator(s).
    hist                Plot marginal histograms.
    hist2d              Plot 2d marginal histograms.
    gan                 Plot GAN things.

optional arguments:
  -h, --help            show this help message and exit
  -V, --version         show program's version number and exit

dinf-plot metrics

usage: dinf.plot metrics [-h] [-v | -q] [-o output.pdf]
                         discriminator.nn [discriminator.nn ...]

Plot loss and accuracy of discriminator(s).

Each metric is plotted as a function of the training epoch,
and the resulting multipanel plot shows:
  - training loss,
  - training accuracy,
  - test loss, and
  - test accuracy.

If multiple discriminator files are provided, the training metrics for
each file are indicated by a different colour. The legend shows the
corresponding filename.

positional arguments:
  discriminator.nn      The discriminator network(s) to plot.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.pdf, --output-file output.pdf
                        Output file for the figure. The file extension
                        determines the filetype, which can be any format
                        supported by Matplotlib (e.g. pdf, svg, png).If no
                        output file is specified, an interactive plot window
                        will be opened. (default: None)

dinf-plot features

usage: dinf.plot features [-h] [-v | -q] [-o output.pdf] [-S SEED] [--target]
                          -m model.py

Plot feature matrices as heatmaps.

By default, one simulation will be performed with the generator to obtain
a set of features for plotting. To instead extract features from the
target dataset, use the --target option.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.pdf, --output-file output.pdf
                        Output file for the figure. The file extension
                        determines the filetype, which can be any format
                        supported by Matplotlib (e.g. pdf, svg, png).If no
                        output file is specified, an interactive plot window
                        will be opened. (default: None)
  -S SEED, --seed SEED  Seed for the random number generator (default: None)
  --target              Extract feature(s) from the target dataset. (default:
                        False)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

dinf-plot hist

usage: dinf.plot hist [-h] [-v | -q] [-o output.pdf] [--top N] [-W] [-c]
                      [-x X_PARAM] [--kde] [-m model.py]
                      data.npz [data.npz ...]

Plot marginal histograms.

One plot is produced for the discriminator predictions,
plus one plot for each model parameter. The choice of which
parameter to plot can be specified using the -x option,
with the special value "_Pr" indicating the discriminator
predictions.

If a pdf requested with the -o option, a multipage pdf is
created. If another format is requested, then one file is
created for each figure (the requested filename will be
modified to include the parameter name).

The resulting figure is a histogram. If the data correspond
to a simulation-only model (provided via the -m option),
then the parameter's truth value will be shown as a vertical
red line. A 95% interval is shown at the bottom of
the figure. By default, all values in the data file contribute
equally to the histogram. For parameter values drawn from the
sampling distribution, this will therefore show the sampling
distribution. The subsequent distribution can be obtained by
weighting parameter values by the discriminator predictions
using the -W option, and/or rejection sampling using the --top
option to accept only the top N samples as ranked by the
discriminator preditions.

positional arguments:
  data.npz              Data file containing discriminator predictions.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.pdf, --output-file output.pdf
                        Output file for the figure. The file extension
                        determines the filetype, which can be any format
                        supported by Matplotlib (e.g. pdf, svg, png).If no
                        output file is specified, an interactive plot window
                        will be opened. (default: None)
  --top N               Filter data to retain top N samples, ranked by
                        discriminator prediction. (default: None)
  -W, --weighted        Weight the parameter contributions by their
                        discriminator prediction. (default: False)
  -c, --cumulative      Plot cumulative distribution. (default: False)
  -x X_PARAM, --x-param X_PARAM
                        Name of parameter to plot. The special name "_Pr" is
                        recognised to plot the predictionsobtained from the
                        discriminator. (default: None)
  --kde                 Also draw a 1-dimensional marginal kernel density
                        estimate. (default: False)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

dinf-plot hist2d

usage: dinf.plot hist2d [-h] [-v | -q] [-o output.pdf] [--top N] [-W]
                        [-x X_PARAM] [-y Y_PARAM] [-m model.py]
                        data.npz

Plot 2d marginal histograms.

One plot is produced for each unique pair of parameters.
As this may lead to a large number of plots (particularly
for interactive use!), the choice of which parameters to
plot can be specified using the -x and -y options.

If a pdf requested with the -o option, a multipage pdf is
created. If another format is requested, then one file is
created for each figure (the requested filename will be
modified to include the parameter names).

The resulting figure is a 2d histogram, with darker squares
indicating higher densities. If the data correspond to a
simulation-only model, then the parameters' truth values will
be indicated by red lines. By default, all values in the
data file contribute equally to the histogram. For parameter
values drawn from the sampling distribution, this will therefore
show the sampling distribution. The subsequent distribution can
be obtained by weighting parameter values by the discriminator
predictions using the -W option, and/or rejection sampling
using the --top option to accept only the top N samples as ranked
by the discriminator preditions.

positional arguments:
  data.npz              Data file containing discriminator predictions.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.pdf, --output-file output.pdf
                        Output file for the figure. The file extension
                        determines the filetype, which can be any format
                        supported by Matplotlib (e.g. pdf, svg, png).If no
                        output file is specified, an interactive plot window
                        will be opened. (default: None)
  --top N               Filter data to retain top N samples, ranked by
                        discriminator prediction. (default: None)
  -W, --weighted        Weight the parameter contributions by their
                        discriminator prediction. (default: False)
  -x X_PARAM, --x-param X_PARAM
                        Name of parameter to plot on horizontal axis.
                        (default: None)
  -y Y_PARAM, --y-param Y_PARAM
                        Name of parameter to plot on vertical axis. (default:
                        None)
  -m model.py, --model model.py
                        Python script from which to import the variable
                        "dinf_model". This is a dinf.DinfModel object that
                        describes the model components. See the examples/
                        folder of the git repository for example models.
                        https://github.com/RacimoLab/dinf (default: None)

Tabulating results

usage: dinf.tabulate [-h] [-V] {metrics,data,quantiles} ...

Tabulate Dinf output.

positional arguments:
  {metrics,data,quantiles}
    metrics             Print discriminator metrics.
    data                Print .npz data---predictions from a discriminator.
    quantiles           Calculate quantiles of the data.

optional arguments:
  -h, --help            show this help message and exit
  -V, --version         show program's version number and exit

dinf-tabulate metrics

usage: dinf.tabulate metrics [-h] [-v | -q] [-o output.txt]
                             [--separator SEPARATOR] [--format FORMAT]
                             discriminator.nn [discriminator.nn ...]

Print discriminator metrics.

positional arguments:
  discriminator.nn      The discriminator network(s) from which to tabulate
                        metrics.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.txt, --output-file output.txt
                        Output file for the tabulated data. If not specified,
                        output will be printed to stdout. (default: None)
  --separator SEPARATOR
                        The string that separates columns. (default: )
  --format FORMAT       Printf-style format specifier for float values.
                        (default: None)

dinf-tabulate data

usage: dinf.tabulate data [-h] [-v | -q] [-o output.txt]
                          [--separator SEPARATOR] [--format FORMAT]
                          data.npz

Print .npz data---predictions from a discriminator.

positional arguments:
  data.npz              Data file in numpy .npz format.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.txt, --output-file output.txt
                        Output file for the tabulated data. If not specified,
                        output will be printed to stdout. (default: None)
  --separator SEPARATOR
                        The string that separates columns. (default: )
  --format FORMAT       Printf-style format specifier for float values.
                        (default: None)

dinf-tabulate quantiles

usage: dinf.tabulate quantiles [-h] [-v | -q] [-o output.txt]
                               [--separator SEPARATOR] [--format FORMAT]
                               [--top N] [-W] [--quantiles QUANTILES]
                               data.npz

Calculate quantiles of the data.

positional arguments:
  data.npz              Data file in numpy .npz format.

optional arguments:
  -h, --help            show this help message and exit
  -v, --verbose         Increase verbosity. Specify once for INFO messages and
                        twice for DEBUG messages. (default: 0)
  -q, --quiet           Disable output. Only ERROR and CRITICAL messages are
                        printed. (default: False)
  -o output.txt, --output-file output.txt
                        Output file for the tabulated data. If not specified,
                        output will be printed to stdout. (default: None)
  --separator SEPARATOR
                        The string that separates columns. (default: )
  --format FORMAT       Printf-style format specifier for float values.
                        (default: None)
  --top N               Filter data to retain top N samples, ranked by
                        probability. (default: None)
  -W, --weighted        Weight the parameter contributions by their
                        probability. (default: False)
  --quantiles QUANTILES
                        Comma separated list of quantiles to calculate.
                        (default: 0.025,0.5,0.975)